12 research outputs found

    Drone-Truck Cooperated Delivery under Time Varying Dynamics

    Get PDF
    Rapid technological developments in autonomous unmanned aerial vehicles (or drones) could soon lead to their large-scale implementation in the last-mile delivery of products. However, drones have a number of problems such as limited energy budget, limited carrying capacity, etc. On the other hand, trucks have a larger carrying capacity, but they cannot reach all the places easily. Intriguingly, last-mile delivery cooperation between drones and trucks can synergistically improve delivery efficiency. In this paper, we present a drone-truck co-operated delivery framework under time-varying dynamics. Our framework minimizes the total delivery time while considering low energy consumption as the secondary objective. The empirical results support our claim and show that our algorithm can help to complete the deliveries time efficiently and saves energy

    A Parallel Algorithm Template for Updating Single-Source Shortest Paths in Large-Scale Dynamic Networks

    Get PDF
    The Single Source Shortest Path (SSSP) problem is a classic graph theory problem that arises frequently in various practical scenarios; hence, many parallel algorithms have been developed to solve it. However, these algorithms operate on static graphs, whereas many real-world problems are best modeled as dynamic networks, where the structure of the network changes with time. This gap between the dynamic graph modeling and the assumed static graph model in the conventional SSSP algorithms motivates this work. We present a novel parallel algorithmic framework for updating the SSSP in large-scale dynamic networks and implement it on the shared-memory and GPU platforms. The basic idea is to identify the portion of the network affected by the changes and update the information in a rooted tree data structure that stores the edges of the network that are most relevant to the analysis. Extensive experimental evaluations on real-world and synthetic networks demonstrate that our proposed parallel updating algorithm is scalable and, in most cases, requires significantly less execution time than the state-of-the-art recomputing-from-scratch algorithms

    Size Matters: Microservices Research and Applications

    Full text link
    In this chapter we offer an overview of microservices providing the introductory information that a reader should know before continuing reading this book. We introduce the idea of microservices and we discuss some of the current research challenges and real-life software applications where the microservice paradigm play a key role. We have identified a set of areas where both researcher and developer can propose new ideas and technical solutions.Comment: arXiv admin note: text overlap with arXiv:1706.0735

    A Parallel Framework for Efficiently Updating Graph Properties in Large Dynamic Networks

    Get PDF
    Graph queries on large networks leverage the stored graph properties to provide faster results. Since real-world graphs are mostly dynamic, i.e., the graph topology changes over time, the corresponding graph attributes also change over time. In certain situations, recompiling or updating earlier properties is necessary to maintain the accuracy of a response to a graph query. Here, we first propose a generic framework for developing parallel algorithms to update graph properties on large dynamic networks. We use our framework to develop algorithms for updating Single Source Shortest Path (SSSP) and Vertex Color. Then we propose applications of the developed algorithms in Unmanned Aerial Vehicle (UAV) based delivery systems under time-varying dynamics. Finally, we implement our SSSP and vertex color update algorithms for Nvidia GPU architecture and show empirically that the developed algorithms can update properties in large dynamic networks faster than the state-of-the-art techniques

    Drone-Truck Cooperated Delivery Under Time Varying Dynamics

    No full text
    Rapid technological developments in autonomous unmanned aerial vehicles (or drones) could soon lead to their large-scale implementation in the last-mile delivery of products. However, drones have a number of problems such as limited energy budget, limited carrying capacity, etc. On the other hand, trucks have a larger carrying capacity, but they cannot reach all the places easily. Intriguingly, last-mile delivery cooperation between drones and trucks can synergistically improve delivery efficiency. In this paper, we present a drone-truck co-operated delivery framework under time-varying dynamics. Our framework minimizes the total delivery time while considering low energy consumption as the secondary objective. The empirical results support our claim and show that our algorithm can help to complete the deliveries time efficiently and saves energy

    Drone-Truck Cooperated Delivery under Time Varying Dynamics

    No full text
    Rapid technological developments in autonomous unmanned aerial vehicles (or drones) could soon lead to their large-scale implementation in the last-mile delivery of products. However, drones have a number of problems such as limited energy budget, limited carrying capacity, etc. On the other hand, trucks have a larger carrying capacity, but they cannot reach all the places easily. Intriguingly, last-mile delivery cooperation between drones and trucks can synergistically improve delivery efficiency. In this paper, we present a drone-truck co-operated delivery framework under time-varying dynamics. Our framework minimizes the total delivery time while considering low energy consumption as the secondary objective. The empirical results support our claim and show that our algorithm can help to complete the deliveries time efficiently and saves energy

    Not Available

    No full text
    Not AvailableA field experiment was conducted during kharif 2018 with 15 genotypes of castor at AICRP on Castor, RRTTS, Bhawanipatna, Odisha to study the relationship between castor seed yield and its nine component traits. Four characters showed significant positive correlation with seed yield/plant at both genotypic and phenotypic level while four characters had higher positive direct effect on seed yield. Three characters viz., number of capsules/primary spike, number of effective spikes/plant and oil content (%) with high positive correlations with seed yield/plant and positive direct effect on seed yield, can be used as selection criteria in breeding for higher seed yield in castor.Not Availabl

    A Parallel Algorithm Template for Updating Single-Source Shortest Paths in Large-Scale Dynamic Networks

    Get PDF
    The Single Source Shortest Path (SSSP) problem is a classic graph theory problem that arises frequently in various practical scenarios; hence, many parallel algorithms have been developed to solve it. However, these algorithms operate on static graphs, whereas many real-world problems are best modeled as dynamic networks, where the structure of the network changes with time. This gap between the dynamic graph modeling and the assumed static graph model in the conventional SSSP algorithms motivates this work. We present a novel parallel algorithmic framework for updating the SSSP in large-scale dynamic networks and implement it on the shared-memory and GPU platforms. The basic idea is to identify the portion of the network affected by the changes and update the information in a rooted tree data structure that stores the edges of the network that are most relevant to the analysis. Extensive experimental evaluations on real-world and synthetic networks demonstrate that our proposed parallel updating algorithm is scalable and, in most cases, requires significantly less execution time than the state-of-the-art recomputing-from-scratch algorithms
    corecore